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1. INTRODUCTION AND PRELIMINARIES 

In 1922, S. Banach [1] introduced the concept of 

Banach contraction principle. It is most celebrated 

fixed point result in nonlinear analysis. Afterward 

many investigators established some important 

fixed point results see ([5]-[10]).  Recently, 

Bhaskar and Lakshmikantham [2], Ran and 

Reurings [3], Agarwal et al. [4] established some 

new theorems for contractions in partially ordered 

metric spaces. The concept of mixed monotone 

mapping has been introduced by Bhaskar and 

Lakshmikantham [2] and established some coupled 

fixed point results for mixed monotone mappings. 

Subsequently to improve many authors have 

established coupled fixed point results for mixed 

monotone see ([11] - [15]). Very recently, in 2016 

Mutlu and G rdal [16] introduced the notion of 

bipolar metric spaces, which is one of 

generalizations metric spaces. Also they 

investigated some fixed point and coupled fixed 

point results on this space, see ([15], [16]). 

In this paper, we will continue to study coupled 

fixed points in the frame of bipolar metric spaces. 

More squarely, we extend the results of Gnana 

Bhaskar and Lakshmikantham ([2]) for a mixed 

monotone contractive mappings. We establish the 

existence of a   A   B, for a continuous mapping 

F: (A; B)   (A; B) such that F (a) = a where (A; B) 

is a partially ordered set with a bipolar metric on it. 

In the case that F is not continuous, we prove the 

existence of a coupled fixed point results by 

making an additional assumption on (A; B). 

 Definition 1.1 ([16]): Let A, B be two non-empty 

sets. Suppose that d: A B  [0, ) be a mapping 

satisfying the below properties: 

(i)   If d (a, b) = 0, then a=b for all (a, b)      

        A B, 

(ii)   If a = b, then d (a, b) = 0, for all (a, b)        

       A B, 

(iii)  If d (a, b) =d (b, a), for all a, b   A B 

(iv)  If d(  ,   )   d(      ) + d(        )  

                               +d(  ,    ) for all     ,    A, 

and    ,    B. Then the mapping d is termed as 

Bipolar-metric of the pair (A, B) and the triple    

(A, B, d) is termed as Bipolar-metric space. 

Example 1.2 ([16]): Let A= (1,  ) and   B= [-1, 1]. 

Define d: A B  [0, ) as d (a, b) =|   -   |, for all 

(a, b)    A B.  Then the triple (A, B, d) is a 

Bipolar-metric space. 

Definition 1.3 ([16]): Assume (     ,    ) and 

(  ,   ) as two pairs of sets and a function as F: 

                is said to be a covariant map. 

If F (  )     and F (  )    , and denote this with                 

F: (        )   (   ,   ,).  And the mapping            

F:                 is said to be a contravariant 

map. If F (  )      , and   F (  )   , and write                                  

F: (       )   (  ,   ). In particular, if    and    

are bipolar metric on (        ) and (   ,    ), 

respectively, we sometimes use the notation           
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F: (           )   (  ,   ,   ) and F: (           ) 

  (  ,   ,   ).  

Definition 1.4 ([16]): Assume (A, B, d) as a bipolar 

metric space. A point v  A  B is termed as a left 

point if v   A, a right point if v   B and a central 

point if both. Similarly, a sequence {  } on the set 

A and a sequence {  } on the set B are called a left 

sequence and right sequence respectively. In a 

bipolar metric space, sequence is the simple term 

for a left or right sequence. A sequence {  }  is 

considered convergent to a point v,  if and only if  

{  }  is the left sequence, v is the right point and 

               = 0;  or  {  } is a right sequence, 

v is a left point and                    = 0.  A bi-

sequence         ({  }, {  }) on (A, B, d) is a 

sequence on the set A  B. If the sequence {  } 

and {   } are convergent, then the bi-sequence 

({  }, {  }) is said to be convergent.  ({  }, {  }) 

is Cauchy sequence, if                 = 0. In a 

bipolar metric space, every convergent Cauchy bi-

sequence is bi-convergent. A bipolar metric space 

is called complete, if every Cauchy bisequence is 

convergent hence biconvergent. 

Definition 1.5 ([16]):  Let (           )           

(  ,   ,   )  be bipolar metric spaces. 

(i)  A map F: (           )   (  ,   ,   ) is called 

left-continuous at a point      , if for every 

    >0,  there is a   >0 such that    (  , b)<   

implies that   (F(  ), F(b))<   for all b   . 

(ii)  A map F: (           )   (  ,   ,   ) is called 

right-continuous at a point       , if for every 

 >0, there is a  >0  such that   (      )<   implies 

  (F(a), F(    ))<   for all a    . 

(iii)  A map F is considered continuous, if it left 

continuous at each point a    and righty 

continuous at each point b   .  

(iv) A contravariant map F: (            )   

(   ,   ,    ) is continuous if and only if                  

F: (           )   (  ,   ,   )  it is continuous as a 

covariant map  

It is observed from the  definition (1.4) that a 

contravariant or a covariant map  F from              

(           ) to  (  ,   ,   )  is continuous if and 

only if (   )   v on (            )  implies        

F((  ))  F(v)  on  (  ,   ,   ). 

 Definition 1.6:  Let (A; B; ≤) be a partial ordered 

set and F: (A; B)   (A; B) be a covariant mapping, 

we say that F is non-decreasing with respect to ≤   

if  a; b   A  B, a ≤ b implies F (a) ≤ F (b), and 

similarly, a non-increasing mapping is defined. 

 Definition 1.7:  Let (A; B; ≤) be a partially 

ordered set and F: (   ;   )   (A; B) 

be a covariant map. The map F has the mixed 

monotone property, if F(a; b) is 

monotone non-decreasing in a and is monotone 

non-increasing in b, that is, for any                    

(a;b)         

 (     )      ;     ≤       F (  ; b) ≤ F (  ; b). 

(     )      ;   ≤      F (      )   F (    ). 

Definition 1.8.  Let F: (  ;  )   (A; B) be a 

covariant map, an element (a; b)         is 

called coupled fixed point of F if F (a; b) = a; and  

F (b; a) = b 

2. MAIN RESULTS 

Let (A; B; ≤) be a partially ordered set and d be a 

bipolar metric on (A; B) such that (A; B; d, ≤) is 

complete bipolar metric space. Moreover, we 

endow the product space (   ;   ) with the 

following partial order: For (a; b), (p; q)         

(p; q) ≤ (a; b) ⇔ a≥p; b≤q. 

We begin with the following theorem that achieves 

the existence of a fixed point results for a mapping 

F on the product space (  ;   ). 

Theorem 2.1:  Let F: (  ;  )   (A; B) be a 

covariant map. If F is a continuous mapping having 

the mixed monotone property on   (A; B) and µ, λ 

be a non –negative constants with the condition  

d (F (l; m); F (r; s)) ≤ µd (l; r) +λ d (m; s)  for all    

l; m   A and r; s   B with l ≥ r; m ≤ s; (1)        

and µ + λ < 1. If there is (   ;   )        such 

that      ≤ F (    ;    ),       ≥ (       ). 

Then there exist (l; m)         such that the 

mapping F:           A  B has 

F (l; m) = l; and F (m; l) = m 

Proof: Let   ;      A and    ;      B, choose an 

elements       ;      A and     ;      B,such that   

  ≤ F (  ;   ) =   ;              ≥ F (      ) =   ;  

And also    ≤ F (    ;  ) =  ,       ≥ F (       ) =   , 
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Similarly, we take 

F (   ;   ) =          F (      ) =   ;  and also 

F (    ;  ) =             F (       ; ) =   : Denote 

  (      )= F( F(     ) , F       ))           

                    =F(      )=   

  (       )=F( F(       ) , F(      ) ) 

                 =F (        )=   

  (       )=F( F(       ) , F(      ) ) 

                =F (        )=   

  (       )=F( F(       ) , F(      ) ) 

                 =F (        )=   

In this process, we get a bi-sequences                

    (      ),    (       ))= (     )  and  

   (      ),    (       ))= (     )  with  

    =    (      ) 

     = F (  (      ),   (       ))=F(     )   

    =    (      ) 

       = F (  (      ),   (       ))=F(     )   

    =    (      ) 

       = F (  (      ),   (       ))=F(     )   

    =    (      ) 

     = F (  (      ),   (       ))=F(     )        

Obviously, verify that 

    F (      ) =      (      ) =            

     (      ) . . . . . . . 

    F (      ) =      (      ) =    

              (      ) . . . . . . . 

    F (      ) =      (      ) =               

     (      ) . . . . . . . 

    F (      ) =      (      ) =             

     (      ) . . . . . . . 

Now, Show that, for n  N and let     =ξ 

d (  (  ,   ),     (  ,   ))  

         + d(  (  ,   ),     (  ,   ))  

    * (     (      ))   (     (      ))+  

                                                       (2)    

Indeed, for n=1, using F (       )                        

F (       )      and F (       )                          

F (      )    

d (F (  ,   ),   (  ,   )) 

      = d (F (  ,   ),F( F(  ,   ), F(  ,   ))        

      μ d (  ,  F(  ,   ))+λ d (  ,  F(  ,   )) 

                                          (3) 

and  

d (F (  ,   ),   (  ,   ))     

        = d (F (  ,   ),F( F(  ,   ), F(  ,   )) 

      μ d (  ,  F(  ,   ))+λ d (  ,  F(  ,   )) 

                                            (4) 

Combing (3) and (4) we have  

d (F (  ,   ),   (  ,   )) 

                   + d (F (  ,   ),   (  ,   ))                                                                             

                 μ+λ)*
  (           )

                 
+                                                                               

                ξ *
  (           )

                 
+ 

And also show that  

d (    (  ,   ),   (  ,   ))  

          + d(    (  ,   ),   (  ,   )) 

               [
               

                 
]  (5)   

Indeed, for n=1, using F (       )                         

F (       )      and F (       )     ,                     

F (      )    

d (  (  ,   ), F(  ,   )) 

   = d (F(F (   ,   ), F (      )), F(   ,    ))           

  μ d (F (  ,   ),    )+λ d (F (      )),   ) 

     (6) 
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d(  (  ,   ), F(  ,   )) 

= d(F(F (   ,   ), F (   ,   ), ) F(   ,   ))                 

  μ d (F (  ,   ),    )+λ d (F (      ),   ) 

          (7) 

Combining (6) and (7)   

d (  (  ,   ), F(  ,   )) 

 + d(   (   ,   ), F(   ,   ))                                                                        

  μ+λ) [
                

                     
]                                                                             

 ξ [
                

                     
] 

Assume that (2) and (5) hold. Using  

    (   ,   )     (   ,   ),                        

    (   ,    )     (   ,   ) and                    

    (  ,    )    (  ,   ), 

    (  ,   )    (  ,   ). 

Moreover, 

     (  ,   ),   (  ,   ))  

=         (  ,   ),                 

                  (  ,   ),     (  ,   )) 

  μ d(    (  ,   ),     (  ,   )) 

       +λ d(               
   (  ,   ))            

                         (8) 

and  

    (  ,   ),   (  ,   ))  

=         (  ,   ),                           

                   (  ,   ),     (  ,   )) 

   μ d(    (  ,   ),     (  ,   )) 

         +λ d(               
   (  ,   )) 

            (9) 

For all n N Combining (8) and (9), then  

    (  ,   ),   (  ,   ))  

           +     (  ,   ),   (  ,   )) 

                   

(μ+λ)*
 (             

          )

                  
           

+ 

            *
 (             

          )

                  
           

+ 

          ⁞ 

            *
 (                 )

                      
+ 

              [
              

                
] (10) 

 Using the property (  ), we get that  

    (  ,   ),   (  ,   )) 

      (  ,   ),    (  ,   ) )      

      +      (  ,   ),     (  ,   )) 

  +⋯⋯⋯ +       (  ,   ),   (  ,   ))  

 and 

    (  ,   ),   (  ,   )) 

      (  ,   ),             

        +       (  ,   ),     (  ,   )) 

      +⋯⋯⋯ +       (  ,   ),   (  ,   )) 

                                                  (11) 

 

Also, we have 

    (  ,   ),   (  ,   )) 

     (  ,   ),             

           +       (  ,   ),     (  ,   )) 

       +⋯⋯⋯ +       (  ,   ),   (  ,   )) 

and  

    (  ,   ),   (  ,   )) 

      (  ,   ),     (  ,   ))   

        +       (  ,   ),     (  ,   )) 

    +⋯⋯⋯ +       (  ,   ),   (  ,   )) 

                                               (12) 
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For each n, m   N, n m.  From (2), (5), (10), (11) 

and (12), then we get  

    (  ,   ),   (  ,   )) 

                    (  ,   ),   (  ,   ))          

         (  ,   ),             

     +     (  ,   ),     (  ,   ))  

        +       (  ,   ),               

+       (  ,   ),     (  ,   ))  +⋯⋯⋯ 

 +       (  ,   ),            

 +      (  ,   ),   (  ,   )) 

     +     +⋯⋯⋯ +    ) 

       , F (  ,   )) +    ,   (  ,   ))) 

  
  

   
*

 (             )

       
         

+      (13) 

And  

    (  ,   ),   (  ,   )) 

          +     (  ,   ),   (  ,   )) 

          (  ,   ),              

       +     (  ,   ),     (  ,   )) 

      +       (  ,   ),              

+       (  ,   ),     (  ,   )) 

 +⋯⋯⋯ +       (  ,   ),   (  ,   )) 

         +       (  ,   ),   (  ,   )) 

      +     +⋯⋯⋯ +  ) 

       [                              ] 

     
  

   
[

              

                
]  (14)

                                                       

For n< m. Since, for an arbitrary   , there exists 

   such that
  

   
 

 

 
. 

From (13) and (14) , we get 

[             
         

               
          ]

 
 

 
 

For n, m    . Then 

     (  ,   )},     (  ,   )}) and  

    (  ,    )},     (  ,   )}) are Cauchy  bi-

sequence  in ( A, B). Since (A, B, d) is a complete 

bipolar metric spaces, there exists l, m  A and         

r, s B such that  

     
   

  (  ,   ) = r,           (  ,   ) = s,   

           (  ,   ) = m,         (  ,   ) = l,

                                                       

(15) 

First we show that F (l, m) = r, F (m, l)=  s and     

F(r, s)=l, F(s, r)=m. 

Let    . Since F is continuous at (l, m), for 

given
 

 
  , there exist     such that  

 d(l, r) +d(m, s)    implies that  

d(F(l, m), F(r, s))  
 

 
 

Since           }   ,           }     and 

          }   ,           }     

For 𝜼= min {
 

 
, 
 

 
}, then there exists    N with 

 d(             𝜼, d(             𝜼, and 

 d(             𝜼, d(             𝜼 

for all n     and every 𝜼   , since 

           }   
        }   and 

           }   
        }  are Cauchy sequences. 

We get  

d(                      )   𝜼   and          

d(              
        )  𝜼. 

So from (iv) in definition 1.1, we get  

d(F(l, m), r )  d( F(l, m),     (  ,   )) 

                        + d(    (  ,      
   (  ,   ))  

                              +d (    (  ,        

                 d( F(l, m), F(           
        ) 
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        + d(F(           
                 

                 F(           
         ))      

            +d(              ) 

       
 

 
+ 𝜼+𝜼    

For each n N. This implies d(F(l, m), r )=0. Hence 

F(l, m)=r . Similarly, we can prove that F (m, l)=  s 

and F(r, s)=l, F(s, r)=m. On the other hand,  

d(l, r) = d                                   

         =    
   

d(           
         ) =0 

and  

d(m, s) = 

d                                   

            =    
   

d(           
         ) =0. 

Therefore, l= r and m= s and hence  

F(l , m)=l and F(m, l)= m. 

The achieved Theorem is still valid for the 

covariant map F is not necessarily continuous. 

Instead, we require that underlying bipolar metric 

space (A, B) has an additional postulate. We 

discuss this in the following result. 

Theorem 2.2. Let (A, B,  ) be a partially ordered 

set and suppose that (A, B,d,  ) is complete bipolar 

metric spaces on (A, B) such that (A, B) has the 

following postulate: 

(i) If a non-decreasing sequence  

     ({  }, {  }) l then (  ,   ) l  n 

(ii) If a non-decreasing sequence 

      ({  }, {  }) m then    (  ,   )  n 

 Let F: (  ;  )   (A; B) be a covariant mapping 

having the mixed monotone property on (A, B) and 

µ, λ be a non –negative constants with the 

condition  

d (F (l; m); F (r; s)) ≤ µd (l; r) +λ d (m; s)          

l; m   A and r; s   B with l ≥ r; m ≤ s;  (16)             

and µ + λ < 1. If there is (   ;   )        such 

that   

   ≤ F (       ),       ≥ F(       ). 

Then there exist (l; m)         such that the 

mapping F:            A  B has 

F (l; m) = l; and F (m; l) = m. 

Proof: Following the proof of previous Theorem 

2.1, we only have to prove that 

 F(l, m)= l and F(r, s)= r, let    . 

Since           }   ,           }     

and           }   ,           }     then there 

exists    N such that for all n     and 

every       , we have  

d (             
 

 
, d(             

 

 
, and  

d(             
 

 
, d(             

 

 
. 

For all n     and every    , since 

           }   
        }   and 

           }   
        }  are Cauchy sequences. 

We get  

d(             
        )  

 

 
   

and  d(              
        )  

 

 
  

Taking    N with for all n    and using  

  (      )  r,    (      )  m and 

                                      (      ) s. 

We obtain  

d( F(l, m), r)  d( F(l, m),     (      ))  

                       + d(    (      ),     (      )) 

                         + d (    (      ),r) 

                d( F(l, m),     (      ),   (      ))      

                   + d(    (      ),     (      )) 

                         + d (    (      ),r) 

             d( l,   (      ))+λ d(m,   (      ))       

                 + d(    (      ),     (      )) 

                       + d (    (      ),r) 

        
 

 
+λ 

 

 
 + 

 

 
 +

 

 
 < (μ+λ) 

 

 
+2

 

 
 <ξ 

 

 
+2

 

 
 <   

This implies that d( F(l, m), r)=0, hence  

 F(l, m)= r. Similarly, we obtain F(m, l) =s,          

F(r, s) =l and F( s, r)=m. On the other hand,  
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d(l, r) = d                                   

          =    
   

d(           
         ) =0 

and  

d(m, s) = 

d                                   

  =    
   

d(           
         ) =0. 

Therefore, l= r and m= s and hence F(l , m)=l and 

F(m, l)= m. 

Further, we show that the coupled fixed point is 

unique, in fact to provided that the space (  ;  ) 

endowed with the partial order having the every 

pair of elements has either a lower bound or an 

upper bound. That is for every (l, m), (   ,   ) 

      , there is an element (p, q)         

such that it is comparable to (l, m) and  (  ,   )     

                                            (17)

   

Theorem 2.3: Adding condition (17) to the 

hypothesis of Theorem 2.2, then the mapping F:  

          A  B has unique coupled fixed point. 

Proof: Let (  ,   )        be a another fixed 

point of F. Then we prove that  

d(l,   ) + d(m,   ) =0, where  

        (  ,   ) =l  and          (  ,   ) =m. 

If (  ,   )     and (l, m) is comparable to (  ,   ) 

with respect to the partial ordering in (  ;  ), then 

for every n N we have (  (l, m),   (m, l)) = (l, m) 

is comparable to (         ,           . 

Now d(  , l) = d (         ,   (l, m)) 

                =d(
 (                       ) 

                      
) 

                  μd            ,     (l, m))    

                +λd                 (m, l))  (18) 

And  

d(  , m) = d (         ,   (m, l)) 

=d(
                          

                      
) 

   μd            ,     (m, l))   

       +λd                 (l, m))  (19) 

For all n N, combining (18) and (19)  

d(  , l) + d(  , m)  

   (μ+λ)                            

      +(μ+λ)                                  

 ξ*
 (                     )

                         
+ 

  ⁞ 

     (
 (               )

                    
) 

                              

Since ξ <1 which implies  

                 =0. Hence we obtain l=   and 

m=  . 

Similarly, if If (   ,   )     and (l, m) is 

comparable to  (  ,   ) with respect to the partial 

ordering  in (  ;  ), then we have l=   and m=  . 

 If (  ,   )     and (l, m) is not comparable to  

(  ,   )  then there exist two  comparable lower or 

upper bounds (a, b), (  ,   )         of (l, m) 

and          . Then for all n N,  

                 = (a, b) and 

                         = (  ,   )  is comparable 

to                  = (l, m) and  

                         = (  ,   )   

  

Now d(  , l) = d (         ,   (l, m)) 

                      d (         ,        )  

                       +d (                  )      

                        +d(             (l, m)) 

            μ [

  (                     )

   (                     )

                         

] 

              +λ[

  (                     )

   (                     )

                        

]     
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(20) 

And    

d(  , m) = d (         ,   (m, l)) 

                      d (         ,        )  

                      +d (                  )  

                      +d(             (m, l) 

   λ [

  (                     )

   (                     )

                         

] 

     + μ [

  (                     )

   (                     )

                        

]      

               (21) 

For all n N combining (20) and (21), we get  

  d(  , l) +  d(  , m) 

    (μ+λ) [

  (                     )

   (                     )

                         

]     

    + (μ+λ) [

  (                     )

   (                     )

                        

]    

  ξ 

{
 
 
 

 
 
 

[

  (                     )

   (                     )

  (                     )

]  

  [

  (                     )

   (                     )

                        

]

}
 
 
 

 
 
 

 

 ⁞ 

    

{
 
 
 

 
 
 

[

  (               )

   (               )

  (               )

]  

  [

  (               )

   (               )

                  

]

}
 
 
 

 
 
 

 

          [

               

                

                
] 

                                            0 as n   

 So that d(  , l) +  d(  , m)=0 implies   =l  and  

  = m. Similarly, if  (  ,   )     and (l, m) is  

incomparable to (  ,   )  with respect to the partial 

ordering  in (  ;  ), then we have l=   and m=  . 

Hence (l, m) is unique coupled fixed point of F. 

If we take equal constants μ and λ in Theorem 2.1, 

then following corollary is obtained. 

Corollary 1:  Let F: (   ;  )   (A; B) be a 

covariant map. If F is a continuous mapping having 

the mixed monotone property on     (A; B) and        

µ   [0, 1) with the condition  

d (F (l; m); F (r; s))   ≤ 
 

 
                             

for all l; m   A and r; s   B with l ≥ r; m ≤ s (22)   

If there exist (    ;    )        such that              

   ≤ F (    ;    ),       ≥ F(       ). 

Then there exist (l; m)         such that the 

mapping F:            A  B has 

F (l; m) = l; and F (m; l) = m. 

Corollary 2:  Corollary 1 satisfy to the hypothesis 

of Theorem 2.1, Theorem 2.2 and Theorem 2.3. 

Then   F:            A  B has a unique coupled 

fixed point. 

Definition 2.4: Let  

F: (A  ; B  )   (A; B) be a covariant map, an 

element (a; p)   A   is called coupled fixed point 

of F if F (a; p) = a; and F (p; a) = p. 

Theorem 2.5: Let  

F: (A  ; B  )   (A; B) be a covariant map. If F 

is a continuous mapping having the mixed 

monotone property on (A, B) and µ, λ be a non –

negative constants with the condition  

d (F (l; r); F (s; m)) ≤ µd (l; s) +λ d (m; r)  for all    

l; m   A and r; s   B with l ≥ s; m ≤ r; (23)         

and µ + λ < 1. If there exist 

 (    ;    )                 such that                

    ≤ F (   ;   ),      ≥ F(      ). Then there exist     

(l; m)                  such that the mapping            

F:                 A  B has      F (l; r) = l; 

and F (r; l) = r 
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Theorem 2.6. Let (A, B,  ) be a partially ordered 

set and suppose that (A, B,d,  ) is complete bipolar 

metric spaces on (A, B) such that (A, B) has the 

following postulate: 

(i) If a non-decreasing sequence         

({  }, {  }) l then (  ,   ) l  n 

(ii)  If a non-decreasing sequence        

({  }, {  }) r then   (  ,   )  n 

 Let F:            (A; B) be a covariant 

mapping having the mixed monotone property on 

(A, B) and µ, λ be a non –negative constants with  

satisfying the   condition of covariant mapping  

d (F (l; r); F (s; m)) ≤ µd (l; s) +λ d (m; r)  for all    

l; m   A and r; s   B with l ≥ s; m ≤ r; (24)        

and µ + λ < 1. If (   ;   )                  

Such that    ≤ F (   ;   )    ≥ F(      ). Then there 

exist (l; r)                such that 

 F:               A  B has 

F (l; r) = l; and F (r; l) = r. 

Corollary 3:  Let 

 F:            (A; B) be a covariant map. If 

F is a continuous mapping having the mixed 

monotone property on (A; B) and µ   [0, 1) with 

satisfying the condition of covariant mapping 

d (F (l; r); F (s; m)) ≤ 
 

 
 (

        

           
)  for all           

l; m   A and r; s   B with l ≥ s; m ≤ r.  (25) 

If there is (   ;   )                

such that     ≤ F (    ;    ),       ≥ (       ). 

Then there exist (l; r)                such 

that F:                 A  B has                

F (l; r) = l; and F (r; l) = r.  

Example 2.7:  Let A = {  (R)/  (R) is upper 

triangular matrices over R} and  

  B = {  (R)/  (R) is lower triangular matrices 

over R} with the bipolar metri  

 d (P,Q) = ∑     -     
 
      for all  P = (   )   

   

  (R) and    Q = (   )   
     (R).  On the set 

(A, B), we consider the following relation:              

(P, Q)        , P ⪯ Q  ⇔           where   is 

usual ordering. Then clearly, (A, B, d) is a 

complete bipolar metric space and       (A, B, ⪯) is 

a partially ordered set. And (A, B) has the property 

as in Theorem (2.2).  Let F: (     )   (A, B) be 

defined as           F (P, Q) =(
   +    

 
)      

(P = (   )   
  Q= (   )   

)         . Then 

obviously, F has the mixed monotone property, 

also there exist    = (    )   
   and                  

        = (    )   
  such that 

F((    )   
 (    )   

  )= (
        

 
)
   

 

                                                      

  and 

F((    )   
 (    )   

  )= (
        

 
)
   

 

                                         ⪯               

Taking (P = (   )   
  Q= (   )   

), 

 (R = (   )   
  S= (   )   

)          with     

P   and Q⪯   ,        ,        ,  we have  

d( F(P, Q), F(R, S) )= d(
   +    

 
, 
   +    

 
) 

              = 
 

 
∑      +   )- (   +   )   

      

               
 

 
(∑     -     

 
      ∑     -     

 
     ) 

               
 

 
                 

Therefore, all the conditions of Corollary 1 holds 

and (    ,     ) is the coupled fixed point of F. 

3 CONCLUSIONS 

This paper presents some coupled fixed point 

results by using weak contractive conditions 

defined on bipolar metric space endowed with 

partial order and suitable examples that supports 

the main results. 
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